Correllian Engineering Corporation (CEC) is arguably the best-known starship manufacturing company in the known galaxy. Also one of the oldest manufacturers, CEC was founded by a consortium of Correllia's best designers and shipbuilders in the early days of the Old Republic, when captains of small Correllian starships risked their lives to explore and map out safe routes through hyperspace. Unlike primary competitors Kuat Drive Yards and Sienar Fleet Systems, CEC does not rely heavily on military contracts, and remains primarily dedicated to the civilian market.

CEC is headquartered in the Correllian system, home of a remarkable number of highly skilled starship designers, engineers, and legendary starpilots. CEC's orbital shipyards produce a wide range of commercial vehicles for exploration, combat, and transporting passengers or freight. Ancillary CEC companies build escape pods, weapons and defense systems, and a multitude of optional add-ons for starships.

CEC built their reputation on starships that are fast, durable, and easily modifiable to suit the needs of independent operators and small companies. For centuries, the most popular testament to this reputation was CEC's YG-series light freighter. Long regarded as the backbone of intergalactic trade and commerce, a few antique YG freighters remain in use, but none resemble the original stock models, let alone each other. Because CEC has always encouraged owners to customize their purchase for individual needs, modifications are practically inevitable for any CEC starship.

Despite the popularity of CEC starships and the YG-series in particular, CEC's starship line was sometimes regarded as uninspired. Working with CEC marketing executives, CEC designers and shipbuilding specialists conceived a new series of ships that would be an affordable and even more modifiable alternative to the steadfast YG-series. In a rare instance of cross-company collaboration, CEC enlisted design help from Narro Sienar, owner of Santhe/Sienar Technologies, a chief competitor in the shipbuilding business. The result was the YT-series.

The YT-series revolutionized the interstellar shipping industry through its unparalleled application of modular design. The common characteristic of all YT-series ships was that they were built around a modifiable circular main corridor, with numerous options for modular compartments that could be positioned around the corridor, radiating out from a central core. A cockpit with large windows was usually mounted on the side of the ship, but was located on the top in some models. Each ship was enveloped by a saucer-shaped hull, to which a wide variety of components could be secured.

Because entire sections and compartments could be mass-produced and arranged into different configurations as required without extensive retooling, CEC not only saved an enormous amount of money, but was able to market the YT-series at extremely competitive prices. Thousands of YT-series ships were produced, and no two were exactly alike.

In the decades that followed the release of the first YT ships, the Old Republic fell to the Galactic Empire. Like other manufacturers, CEC did build starships that were either commissioned or appropriated by the Imperial Navy; but when the Rebel Alliance rose up against the Empire, CEC donated ships and supplies to the Rebels. And in two decisive battles, a privately owned Correllian Engineering Corporation YT-1300 freighter named the Millennium Falcon helped shape the course of history.

CEC's starship line was sometimes regarded as uninspired.

The history of starship manufacturers is a story of innovation and competition, and the Correllian Engineering Corporation is a testament to the ingenuity and skill of the engineers and shipbuilders who have contributed to the history of space exploration and commerce.
Although the majority of YT-1300 hull and cockpit configurations featured external starboard-mounted cockpits, CEC offered modular options for port-mounted cockpits, central-mounted cockpits (usually elevated directly above the gap between the mandibles), and cockpits that could be affixed to other positions on the hull. Some YT-1300s appear to have no obvious cockpit at all, as CEC also offered options for a completely armored ship with an ‘embedded’ cockpit, located under a heavily shielded hull, without any windows or viewports, a variation that depends heavily on visual sensors.

While some enthusiasts erroneously maintain that certain YT-1300 configurations were distinct models of the ‘stock light freighter’, even more vexing are contradictions about the ship’s overall length. Not long after CEC began production of the YT-1300, the model’s keel length was improperly recorded on official classification documents, an error in specification that was distributed to spaceports all over the galaxy. Some have attributed the gaffe to a malfunctioning secretarial droid who allegedly served either CEC or the Bureau of Ships and Services (BoSS), while others have blamed it on a policy of misinformation within the highly competitive shipbuilding industry. A few industry insiders purported that the ship’s estimated length was filed with the BoSS before the forward mandibles had been incorporated into the design. Spaceport officials and frustrated pilots were among the first to catch on to the numerical discrepancy because YT-1300s were frequently assigned to docking bays that were too small to accommodate their actual bulk.

Yet another problem turned up when starship mechanics realized that CEC did not authorize the publication of many of the YT-1300 design documents that remain in circulation, and which feature vastly different internal layouts than can be found in existing ships. Some of these documents were based on legitimate alternate designs offered by CEC to buyers seeking customization, but most of these designs were for configurations that were never produced. Evidently, early in the design phase several different sets of prototype deck plans and scale models were stolen from a CEC shipyard office. These materials became widely available, and because they bear official CEC seals the designs are still frequently mistaken as schematics for actual starships.

As a public service, CEC has provided the following diagrams to distinguish the better-known YT-1300 transport variants from unauthorized replicas.
SPECIFICATIONS

- **Current Designation:** Millennium Falcon
- **Manufacturer:** Corellian Engineering Corporation
- **Make:** Corellian YT-1300 light freighter (modified)
- **Serial Number:** YT 482727ZED
- **Length:** 34.37m
- **Maximum Speed (atmosphere):** 1,050kph (650mph)
- **Hyperdrive:** Class 0.5
- **Backup Hyperdrive:** Class 10
- **Engines:** Quadex power core, powering Isu-Sim SSP05 hyperdrive generator (heavily modified); 2 Giroyne SRB42 sublight engines (heavily modified)
- **Shielding:** Military-grade deflector shield generators
- **Navigation:** Rubicon navicomputer with Microaxial HyD modular navicomputer backup (modified)
- **Armament:** 2 CEC AG-2G quad laser cannons, 2 Arakyd ST2 concussion missile tubes, 1 Blastech Ax-108 ‘Ground Buzzer’ blaster cannon
- **Crew:** 2 (minimum)
- **Passengers:** 6
- **Cargo:** 100 metric tons
- **Consumables:** 2 months
- **Cost:** Not available for sale
1. Power converter and batteries
2. Number three hold
3. Doors to engine room
4. Fuel drive pressure stabilizer
5. Heat vents
6. Sublight engines
7. Hyperdrive
8. Quad laser cannon
9. Starboard airlock
10. Passage tube to cockpit
11. Cockpit
12. Acceleration compensator
13. Main hold
14. Upper hatch
15. Main sensor antenna
16. Armor plating
17. Concussion missiles
18. Deflector shield projector
19. Deflector shield generator
20. Maintenance crawlway
21. Mandible exterior access hatch
22. Passive sensor antenna
23. Sensor jammer
24. Freight-loading arms
25. Forward floodlight
The aft bulkheads of the Millennium Falcon’s cockpit are covered with instrument lighting, gauges, and control switches for systems throughout the ship, including navigation and propulsion. The hatch that separates the cockpit from a passage tube (the access corridor that leads to the circular main corridor) can be sealed. Taller pilots and passengers must duck as they move through the hatch. If the instrument lighting fails during start-up procedures, CEC does not recommend striking the aft bulkhead to make the lighting stay on.

In addition to a standard subspace radio, which has a limited range of only a few light years, the Falcon is equipped with a Chedak Frequency Agile subspace transceiver. A relatively common device, the Chedak allows faster-than-light audio, video, and hologram communications, and is also used to broadcast distress signals and other emergency messages. The transceiver’s subspace antenna has 12km of tightly wound, ultrathin superconducting wire that allows it to achieve a broadcast range of approximately 40 light years. The Chedak’s receiver automatically monitors standard clear frequencies for distress signals and hailing messages from nearby vessels. Han Solo has added a Carbanti Whistler encryption module, but uses the unit sparingly because subspace messages can be intercepted by any vessel within the transceiver’s considerable broadcast range.

The Millennium Falcon has a series of cameras, blast doors, weapons, and other security measures placed throughout the ship, to assist the crew in combating unwanted visitors without directly exposing themselves. All the Millennium Falcon’s access systems have inboard overrides, which can make life complicated for anyone interested in forced entry. But after Han Solo temporarily lost the Falcon to skilful thieves, he installed a sophisticated anti-theft device with a ‘delayed response’ default mode. This device relies on retina scans of the ship’s systems operator, and palmprint identification via the instrument panel steering yoke. If a thief manages to bypass the other security systems and launch the Falcon, the first attempt to employ the sublight engine or hyperdrive automatically triggers a default that sends the ship directly back to the place from which it was launched.
When the YT-1300 was first released, CEC’s promotional campaign encouraged pilots to visit any major CEC dealer or authorized reseller with on-premise flight simulators before purchasing a YT-1300. The simulators, CEC maintained, would allow pilots an opportunity to familiarize themselves with ‘the unique challenges’ of operating the new freighter.

This ‘encouragement’ was actually part of a cagey CEC marketing strategy, designed not only to generate interest in the YT-1300, but to promote the idea that the YT-1300 was more than the average pilot could handle. The strategy worked, as thousands of pilots not only tested the flight simulators but left the CEC dealer with a new YT-1300. While inexperienced pilots are typically curious about the degree of difficulty involved in operating a wide freighter with a starboard-mounted cockpit, most experienced pilots maintain that the so-called challenges are no different than flying any ship with sections that extend beyond the pilot’s visual range.

According to CEC’s guidelines for flying the YT-1300, engines should warm up for approximately three minutes before initiating the repulsorlift drive for lift-off. CEC recommends the same amount of time for starting the sublight drive and up to several minutes or more for the hyperdrive, depending on the complexity of the calculations required by the navicomputer. Although starting any other YT-1300 before such preliminary warm-ups could wreak havoc on a ship’s systems, Han Solo’s modifications enable the Millennium Falcon to launch from a planet or space station within 20 seconds of starting the engines, and can usually launch the Falcon into hyperspace with less than three minutes of prep time.

The cockpit’s dual control yokes are similar to the controls on most starships: to ascend, pull back on the yoke; to descend, push the yoke forward. Rotating the yoke controls both pitch and roll, and a small side-stick is used for tight turns and rolls. The throttle sets the desired power level: push the throttle to increase speed, and pull back to decelerate. The deceleration controls are linked to the Falcon’s attitude and braking thrusters, which work in conjunction with the ship’s thrust-regulating alluvial dampers. In the hands of an especially skilled pilot, these simple controls can transform the bulky YT-1300 into a nimble and elusive flyer.
When Lando Calrissian acquired the Millennium Falcon, the freighter had a standard Corellian Engineering Corporation twin gun laser cannon mounted in the dorsal turret. Calrissian replaced the standard twin gun with a more powerful CEC AG-2G quad laser cannon.

The AG-2G is well known for rapid transverse movement and for a good light beam for long-range shooting. The gunner uses the horizontal control pedals to rotate the gun left or right, while using the vertical control sticks to point it up or down. The entire turret automatically rotates on a ball-swivel rotation mounting, under the command of the tactical targeting computer. The laser barrels fire one at a time, following a pattern of rotation selected by the gunner. Each barrel fires every 1.32 seconds.

The AG-2G cannons draw energy directly from the Falcon’s Quadex power core. The cannons have enhanced cooling packs and compressors for prolonged use without the risk of overheating. The unusual splitter coupling slightly disperses the fired energy beam, forcing the target’s shields to deflect energy simultaneously from two hits, which increases the likelihood of overloading the target’s shields and inflicting greater damage.

Because of the Falcon’s overall design and the position of her main batteries at the precise top and bottom of the ship, her turrets’ fields of fire overlap in a wedge that expands from the freighter’s mid-section all the way around. Solo and Chewbacca refer to this overlap as the ‘Money Lane’, as they have a standing wager on who is the better shot with the quad-cannons, and kills scored in the Money Lane carry a double payoff.

QUAD LASER CANNONS

The Falcon’s next owner, Han Solo, installed a second turret-mounted AG-2G cannon in the ship’s belly. Solo routinely checks the freighter’s underside to see that the interrupter templates have automatically slid into place along the servo-guides for the belly turret. This check ensures the quad-mounted guns won’t accidentally blow away the landing gear or boarding ramp if Solo has to fire them while the ship is grounded.

Solo upgraded both cannons by adding enhanced power cyclers, high-volume gas feeds, and custom-modified laser actuators—with larger energization crystals—for each cannon’s barrel, effectively transforming the cannons into military-grade blasters. This highly illegal modification magnifies the laser beam intensity so much that a pursuing light ship, such as an Imperial Tie fighter, can be destroyed with a single hit.

Solo upgraded both quad laser cannons by adding enhanced cooling packs and compressors for prolonged use without the risk of overheating. The unusual splitter coupling slightly disperses the fired energy beam, forcing the target’s shields to deflect energy simultaneously from two hits, which increases the likelihood of overloading the target’s shields and inflicting greater damage.

Because of the Falcon’s overall design and the position of her main batteries at the precise top and bottom of the ship, her turrets’ fields of fire overlap in a wedge that expands from the freighter’s mid-section all the way around. Solo and Chewbacca refer to this overlap as the ‘Money Lane’, as they have a standing wager on who is the better shot with the quad-cannons, and kills scored in the Money Lane carry a double payoff.

QUAD LASER TARGETING COMPUTER

During the fraction of a second that it takes for a skilled gunner to center his sights on a target and pull the trigger, and also the brief time it takes for weapons to energize and fire, a modern starfighter can easily move out of a gunner’s sights. Targeting computers compensate for the delay, charting the speed and course of the target and firing just slightly ahead of the point at which the pilot aims.

The Falcon’s AG-2G advanced tactical targeting computer is designed to augment the gunner’s skill. The advanced computer is accurate up to the longest range of the weapon, and will lock on to any target of greater than 4m in length which stays within scanning range for more than 1.5 seconds. Unfortunately, most Imperial TIE models are fast enough to avoid the ‘one-point-five lock’, as it is called, leaving AG-2G gunners to rely on their own sharp eyes and steady hands.

REMOTE CONTROLS

Because Calrissian could not be in the Falcon’s cockpit and the dorsal turret at the same time, and because his droid co-pilot Vuffi Raa was a pacifist, Lando installed a pair of auxiliary pedals beneath the cockpit’s control console that allowed him to operate a pair of smaller laser weapons on the upper hull. Whenever he stepped outside his ship, he carried a remote-control device that enabled him to trigger all of the weapons, and also carried a transponder that kept the Falcon’s guns from sweeping within a couple of degrees of whoever wore it.

When Han Solo obtained the Falcon, he and Chewbacca removed the auxiliary pedals because Solo found the foot-operated devices awkward, and the Wookiee needed the extra legroom. Anticipating that they would need to control the Falcon’s cannons from the cockpit, they installed a pair of trackball controllers to the left of the control console’s central display monitor, and installed similar controls at the engineering stations. While the remote-control devices offer definite advantages, the one drawback is diminished accuracy with the cannons. Fortunately, the Falcon evades most attacks by way of stealth and sheer speed.

- Access tube
- Ladder
- Gunner’s seat
- Twin firing grips with built-in triggers
- Tactical targeting computer
- Systems status indicators
- Maintenance access panels
- Transparisteel viewport
- Directional control pedals
- Rotating platform base
- Horizontal support arm
- Laser barrels
- Tracking servos
- Laser cooling unit
- Swivel mount

Han Solo wears a headset comlink so he can maintain communication with Chewbacca in the cockpit.

Protected by military-grade deflector shields, the cannon turrets’ transparisteel windows offer clear views outside the ship. A single blast from the modified cannons can destroy a TIE fighter.